Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells.

نویسندگان

  • Janjira Intra
  • Aliasger K Salem
چکیده

Poly(lactide-co-glycolide) (PLGA) microparticles have significant potential for sustained delivery of plasmid DNA (pDNA). However, unmodified PLGA microparticles have poor transfection efficiencies. In this study, we use several approaches to enhance the transfection efficiencies of PLGA microparticles in a HepG2 liver cell line. Polyethylenimine (PEI) is used to condense the pDNA prior to loading into the PLGA microparticles. This provides enhanced loading efficiencies and greater protection to the pDNA during the entrapment process. In addition, the pDNA used (ApoE) incorporates a hybrid liver-specific murine albumin enhancer/α1 antitrypsin promoter (AlbE/hAAT) to enhance transgene expression in human liver (HepG2) cells. The percentage of surfactant used in the preparation of the microparticles, the polymer composition of the PLGA, the ratio of the PEI to pDNA (N/P), the structure of the PEI and the potential utility of a galactose targeting ligand were then investigated to further optimize the efficacy of the cationic microparticle non-viral delivery system in transfecting HepG2 cells. For each PLGA PEI-pDNA microparticle formulation prepared, we evaluated particle size, ζ-potential, loading of pDNA, cytotoxicity, and transgene expression in HepG2 cells and control human embryonic kidney (HEK293) and monkey African green kidney fibroblast-like (COS7) cells. Loading PLGA particles with PEI-ApoE pDNA complexes resulted in a significant reduction in particle size when compared to PLGA microparticles loaded with ApoE pDNA alone. Scanning electron microscopy images showed that all the particle formulations were smooth and spherical in appearance. Incorporation of the cationic PEI in the PLGA particles changed the ζ-potential from negative to positive. Complexing PEI with ApoE pDNA increased the loading efficiency of the ApoE pDNA into the PLGA microparticles. The cytotoxicity of PLGA particles loaded with PEI-ApoE pDNA complexes was similar to PLGA particles loaded with ApoE pDNA alone. The transfection efficiency of all particle formulations prepared with ApoE pDNA was significantly higher in HepG2 cells when compared to HEK293 and COS7 cell lines. The release of PEI-pDNA complexes from particles prepared with different PLGA polymer compositions including PLGA 50-50, PLGA 75-25, and PLGA 85-15 was sustained in all cases but the release profile was dependent on the polymer composition. Transmission electron microscopy images showed that PEI-pDNA complexes remained structurally intact after release. The optimum formulation for PLGA particles loaded with PEI-ApoE pDNA complexes was prepared using 2% polyvinyl alcohol, 50-50 PLGA compositions and N/P ratios of 5-10. Strong sustained transgene expression in HepG2 cells was generated by PLGA PEI-ApoE pDNA particles up to the full 13 days tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resveratrol reduces lipid accumulation through upregulating the expression of microRNAs regulating fatty acid bet oxidation in liver cells: Evidence from in vivo and in vitro studies

MicroRNAs has been shown to regulate lipogenesis in liver. The aim of the present study was to investigate whether the effects of resveratrol (RSV) on lipogenesis is associated with the changes in the expression of two miRNAs (miR-107 and miR-10b) that regulate lipogenic pathways. 30 wild type C57BL/6j male mice were randomly fed three diets: a standard chow diet (ND), a high fat diet (HFD, 60%...

متن کامل

Resveratrol reduces lipid accumulation through upregulating the expression of microRNAs regulating fatty acid bet oxidation in liver cells: Evidence from in vivo and in vitro studies

MicroRNAs has been shown to regulate lipogenesis in liver. The aim of the present study was to investigate whether the effects of resveratrol (RSV) on lipogenesis is associated with the changes in the expression of two miRNAs (miR-107 and miR-10b) that regulate lipogenic pathways. 30 wild type C57BL/6j male mice were randomly fed three diets: a standard chow diet (ND), a high fat diet (HFD, 60%...

متن کامل

Evaluation the effect of analog curcumin on the display and expression of SIRT1 and FAS genes in HepG2 fatty cells.

Abstract: Background: Non-alcoholic fatty liver is a disease that will lead to liver cirrhosis if not treated. Curcumin is the active substance of the rhizome of the turmeric plant, which has antioxidant, anti-inflammatory, antimicrobial, etc. properties. In the present study, the effects of curcumin analogue on the expression of SIRT1 and FAS genes and the accumulation of triglycerides in f...

متن کامل

An Alkaline Phosphatase Reporter Gene Assay for Induction of CYP3A4 In Vitro

CYP3A4 probably has the broadest catalytic activity of any cytochrome P450. It is a crucial task to test new drug candidates in a reliable system for their ability to induce expression of this enzyme. Firstly, a total of 300 bp core distal enhancer of CYP3A4 XREM region (-7972/-7673) were amplified from human genomic DNA. The PCR product was then ligated into a human secretory alkaline phosphat...

متن کامل

Toxicity Effect of Hydro-Alcoholic Extract of Pistachio Hull and Its Liposomal Form on Liver Cancer Cells (HepG2)

Background and Objectives: Pistachio skin is rich in phenolic compounds and an inexpensive source of antioxidants, which can be a good option for combating cancer cells. The aim of this study was to determine the potential of pistacia vera hydroalcoholic extract and its liposomal form as a potential cytotoxic agent in HepG2 cell line, which is related to human liver cancer. Materials and Metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of drug targeting

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2011